湘东中学 贺勇
【摘要】利用几何画板向学生传授知识,学生不仅仅是单纯地记忆数学知识,而是能够更有实感地去把握它.这样能激发学生的情感,培养学生的兴趣,提高学生的创新能力,让学生学得轻松,教师也教得轻松
【关键词】几何画板 信息技术
作为数学教师,笔者在课堂教学中经常会碰到一个棘手的问题:几何知识的探究需要教师在黑板上画图,如果画草图或者不画,学生就难以在头脑中形成直观印象,知识的探究效果就会大大折扣;如果用工具画图,画得太详细,就会耽误时间,降低课堂效率.要想处理好这个问题,确实左右为难.如果用几何画板的话,问题就迎刃而解,它可以很好地动态演示图形,以“动态几何”来动态演示教师的教学设计,供学生观察、探究几何知识。用几何画板辅助教学,可以充分地调动起学生学习的积极性,使学生在轻松、愉快的氛围中获得知识.下面仅就几何画板在数学教学中的应用谈几点认识.
1 几何画板的直观性
传统的几何课堂只能由教师“手工”完成,许多知识由于条件限制讲不透,对学生的空间想象能力要求较高,导致很多学生产生畏难情绪,对几何的学习失去兴趣.现在有了几何画板,情况就完全不一样了,它能够准确、动态地表现几何问题,让学生在直观演示中体会几何的奥秘.
如在教授三角形的三条线即中线、角平分线、高是否交于同一点这个问题时,在传统的教学中只能靠教师精确地画图,有一点儿误差的话,结果就出不来了.如果利用几何画板就不同了,可以先在画板上任取三个点,然后用线段把它们连起来组成一个三角形.这时,任意拉动其中的一个点,虽然图形的大小、位置会发生变化,但形状一定还是三角形.接着在几何画板中分别构造出三角形的三条中线、三条高、三条角平分线,先让学生观察是否交于一点?结果是肯定的。这时再拉动其中任一点时,三角形的形状同样会发生变化,但三条中线、高、角平分线仍然交于一点.这样就可以在图形的变化中观察到不变的规律,加深学生对这一性质的理解.
再比如在讲授四边形的内角和时,通常的做法是让学生自己动手画一个四边形,然后用量角器度量计算和,很有局限性.如果利用几何画板软件画任意一个四边形,量出它的各内角的度数并计算它们的和,随后拖动顶点改变所画四边形的形状,这时学生会观察得到各角的度数虽然发生变化,但是其内角和始终等于360°,从而很自然地得出“四边形内角和等于360°”这一结论.而且让学生体会了数学由特殊到一般的数学思想.
2 几何画板的动态性
传统的几何教学学生学得不好,关键在于其图形的抽象性.学生对于由图形语言转化成几何语言感到很困难,往往是胡写一通,过程也非常不规范.在传统的教学模式下,教师通常是利用三角板、直尺、圆规等工具用粉笔在黑板上做出需要的图形,但这样的图形是固定的、死板的,许多学生由于缺乏空间想象能力跟不上课堂节奏,所以导致几何越学越差.但利用几何画板来辅助教学,可以使“出示的图形更灵活,展现的图形更丰富,而且规范、直观”.
如在讲授轴对称图形和中心对称图形这一课题时,虽然通过观察现实生活中的典型图片,学生对轴对称图形和中心对称图形的概念非常熟悉,可是真正判断的话还是有一定的困难,因为学生很难想象这个图形翻折后或者旋转180°之后是什么情况.一些教师会含糊地讲讲了事,使学生还是一头雾水,越听越不懂.这时如果利用几何画板,把一个图形是怎样沿着某一条直线翻折过来,然后直线两旁的部分是怎样重合或不重合这个动态的过程展示给学生,学生就会彻底地理解这些图形所具备的特点.当然在讲授旋转、平移时也可以借助于几何画板演示其动态过程,以便帮助学生理解掌握.
在讲授三角形的中位线这一节时,传统的教学方法是教师在黑板上画上一个三角形,作出中位线,然后让学生观察得出“三角形的中位线平行于第三条边并等于第三条边的一半”,再加以证明.运用几何画板,教师就可以事先做出一个三角形及其中位线,在几何画板上显示各边和中位线的长度,随后让学生拖动三角形的任一顶点.这时中位线的位置在动态变化,各边和中位线的长度也在动态变化.这个演示过程体现了从特殊到一般,引导学生观察这一动态变化过程中的不变关系、不变量,学生通过这一动态学习直观地感受到知识产生和发展的过程.
3 几何画板帮助理解动点问题
现在中考的一个热点问题就是动点问题,这种问题仅仅靠题目中出现的固定图形根本解决不了,还得看学生对图形的直觉能力以及从变化中看到不变实质的数学洞察力.动点问题一直是数学求函数值、最值问题时学生较难解决的一类题目.学生面对图形,往往想到的只是图形里面所画的固定点,想不到还有别的情况,体现不出动点的动性.几何画板的主要优势就是能够使静态变为动态,抽象变为形象,利于抽象思维能力的培养.
在实际教学中,运用几何画板解决动点问题最典型的应该是函数部分,而且函数是整个初中数学的命脉,也是学生最难以理解的内容.如在研究一次函数图象时,可以先让学生自己猜想k、b对函数图像的影响,然后教师结合几何画板演示,拖动图像让k、b的值发生变化,学生观察图像有何特点?学生通过观察会很容易地得出结论.而且通过这一节课的学习,让学生经历了猜想、探索、观察、验证的经历,加深了学生印象,并提高了学习数学的兴趣.
4 利用几何画板,让教学活动更自由
在平时的教学过程中,教师常常有这样一个困惑:在课堂教学中出现学生的思考顺序与自己提前预设的顺序不一致的时候,教师往往牵着学生的鼻子走,会努力将学生的思路引到所预设环节中来,但这样的做法会不利于学生的思考,学生当时可能会按照教师的思路往下走,但是在学生的脑海中始终在思考“为什么我的回答不行呢”?如果运用几何画板就可以有效地克服这个问题.
如在讲授“二次函数和一元二次方程的关系”时,抛物线与x轴的交点情况有三种,教师可以事先用几何画板做好这三种情况,学生想到哪种情况,就出示相应的情况供学生研究.由学生进行分类,教师按照学生的回答随意拖动,让学生真正参与知识的探索过程,提高课堂教学的效率.
总之,几何画板在数学课堂教学中的广泛应用,不仅带来教学内容、教学方法、教学模式的变化,可以使学生很直观地感受图形,更好地研究几何知识,更重要的是吸引了学生学习几何的兴趣,变“要我学”为“我要学”,真正体现了课堂教学中学生的主体地位和教师的主导地位.著名数学家华罗庚曾经说过:“数缺形少直观,形缺数难入微.”利用几何画板向学生传授知识,学生不仅仅是单纯地记忆数学知识,而是能够更有实感地去把握它.这样能激发学生的情感,培养学生的兴趣,提高学生的创新能力,让学生学得轻松,教师也教得轻松.
【参考文献】
刘华; 信息技术与数学的整合---几何画板篇;中学数学月刊;2010年01期
郭信波;用几何画板做数学实验和研究;全国教育科研“十五”成果论文集;2005年
罗凌燕;对几何画板在初中数学教学中的探讨;教育技术应用与整合研究论文;2005年